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Abstract
We propose a nonlinear model on a regular infinite one-dimensional lattice.
It describes the three-component dynamical system with modulated on-site
masses and is shown to admit a zero-curvature representation. The associated
auxiliary spectral problem is basically of third order and gives rise to fairly
complicated subdivision into domains of regularity of Jost functions in the
plane of complex spectral parameter. As a result, both the direct and the inverse
scattering problems turn out to be substantially nontrivial. The Caudrey version
of the direct and inverse scattering technique for the needs of model integration
is adapted. The simplest soliton solution is found.

PACS numbers: 45.05.+x, 05.45.Yv, 03.50.Kk

1. Introduction

In starting to compose the material for this paper, we were fully aware of main driving
forces enabling us to formulate a more or less coherent idea for this work and the basic
tools of its implementation. Since 1982, when becoming acquainted with the two-component
Davydov–Kyslukha model [1–3] invoked to explain a possible mechanism of energy and
charge transfer in long regular macromolecules, and especially since 1984 when becoming
acquainted with the integrable discretization of the nonlinear Schrödinger equation given
by Ablowitz and Ladik [4–6], the inexplicit thought about some multicomponent nonlinear
integrable model on a lattice suitable for the needs of condensed matter physics has persistently
come to mind. We believe a number of physicists have tried to model the electronic (or
other intramolecular) subsystem coupled with the subsystem of lattice on-site displacements
in terms of some integrable multicomponent model, although undoubtedly a vast majority
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of other researchers have no illusions on this subject. As an intermediate between these
two opposite points of view, we refer to the recent attempt to describe the exciton–vibron
system in terms of integrable Ablowitz–Ladik and Toda subsystems coupled, however, with
the loss of integrability in the system as a whole [7]. We do not yet know of any reports
on a successful coupling of the discrete Schrödinger field and the discrete field of on-site
displacements into unified integrable nonlinear system. Moreover, our own attempts to solve
this problem have ceased to produce direct results. Nevertheless, the experience of such
activity has enabled us to switch our interest exclusively to finding an appropriate coupling
between the nonlinear fields of on-site displacements. Even the one-component nonlinear
systems of this type now attract considerable attention as the simplest models of granular
and structured geophysical media [8–13]. In this respect any new discrete nonlinear system
being both integrable and multicomponent deserves to be developed and studied, provided the
evolution of each of its components is governed by the second-order derivative with respect
to time. We have preferred to realize this intention within the framework of discretized zero-
curvature representation [14–19] with the use of a new third-order spectral operator serving
to avoid any trivial matrix generalizations of the standard one-component Toda system [20].
Two different ways to increase the order of the spectral operator are described in section 2.
One of these, which ideally fitted to both the zero-curvature approach in the generation of
nonlinear evolution equations and to the Caudrey treatment of the direct and inverse scattering
transforms, is adopted in this paper.

In a series of papers [21–25] Caudrey has developed a fairly constructive version of
inverse scattering transform valid in principle for any one-dimensional scattering problem of
an arbitrary order. In particular, the method enables us to integrate the nonlinear evolution
equations associated with the third-order differential (continuous) and finite difference
(discrete) spectral problems in a substantially more simple manner [22, 24] compared with
other approaches [26, 27] as well as to treat adequately the so-called loop-like soliton and
multisoliton solutions [28, 29].

Bearing in mind the success of the Caudrey approach here we introduce a new third-order
discrete spectral problem and show how it generates an integrable dynamical system of three
nonlinearly coupled fields on a regular infinite lattice. We give a general sketch of the Caudrey
method as applied to the model of interest and test it on the simplest solution.

The main features of the suggested model are as follows. The model describes the three-
component nonlinear dynamical system on regular one-dimensional lattice of second order
in time with regards to each field variable. Two of its components are mutually equivalent
and if required may be combined approximately into the Toda-type field accompanied by
some satellite field. The third component of the system is responsible for the angular valued
field similar to that in the sine-Gordon model but with another type of nonlinearity and
with the standard definitions of spatial and temporal coordinates. The couplings between
the components are essentially nonlinear and displayed both in kinetic and potential parts of
Lagrangian function.

For the convenience of a formal comparison with our model and its auxiliary spectral
problem, we would like to refer to some interesting publications dealing with the discretized
integrable nonlinear evolution equations, such as the sine-Gordon lattice model in light-cone
coordinates [30–33], the three wave discrete system [34] and a number of other discrete
integrable nonlinear systems broadly listed by Tsuchida [35]. This list can be readily extended
taking into account appropriate references throughout the main text of our paper.

In section 2 we introduce two auxiliary linear problems in a form suitable to generate the
integrable nonlinear model in the framework of the zero-curvature equation with the spectral
problem chosen to be of third order. In parallel, we discuss an alternative way of formulating



Three-component nonlinear dynamical system generated by the new third-order discrete spectral problem 5407

the spectral problem adequate to generate the integrable models within Gel’fand–Dikiy [36],
Lax [37, 38] or generalized Wronskian [39] techniques. In appendix A we reformulate our
original third-order spectral problem in terms of this alternative approach for the sake of
comparison. In appendix B we provide a broad explanation of how the final expressions for
the spectral and evolution operators can be obtained.

In section 3 we present the Lagrangian form of the discrete nonlinear dynamical system
under study, which has been derived relying upon the zero-curvature approach and we briefly
characterize the meaning of its field components.

In sections 4 and 5 we make preparatory steps useful for the Caudrey method to be
applied to the integration of our nonlinear model. In particular, we perform the gauge
transformation ensuring that the transformed spectral operator possesses the same limits at
both spatial infinities (section 4). Then we calculate the eigenvalues of the transformed spectral
operator taken at any spatial infinity and find both right and left sets of its eigenfunctions
(section 5). These data enable us to divide the plane of the complex spectral parameter
into six different regions serving in future as the regions of regularity for the concrete Jost
functions.

Section 6 gives the generalized Caudrey definition of (envelope) Jost functions as the
solutions of Fredholm (not Volterra) summation equations with meticulously specified kernels.
In contrast to the usual definition, the Caudrey definition permits us to avoid a tedious
construction procedure of appropriate Jost functions from the solutions of direct and conjugate
spectral problems. In a standard definition, such a procedure becomes inevitable beginning
already with the third-order spectral problems. Relying upon the formal resolution of Fredholm
equations we are able to treat the spectral data in terms of singularities in the plane of the
complex spectral parameter emanating in the Jost functions from the singularities of respective
resolvents.

In section 7 we observe that the formal mapping of field amplitudes into the Jost functions
claimed in section 6 turns out to be incomplete. We correct this mapping via the back gauge
transformation in all quantities of interest.

In section 8 we show how to derive the fundamental formulae expressing each residue of
one particular Jost function as the superposition of two other Jost functions taken in the point
of respective pole location. The set of all superposing coefficients supplemented by the set of
all pole locations constitute the discrete part of the scattering data.

In section 9 we formulate the inverse scheme for the reconstruction of (envelope) Jost
functions from the discrete part of scattering data. This scheme is valid only for the so-called
reflectionless case when the continuous part of scattering data caused by discontinuities of
(envelope) Jost functions in the plane of complex spectral parameter is absent. Of course, in
general the inverse scattering problem had to be formulated as a Riemann–Hilbert boundary
value problem on the lines separating six different regions in the plane of the complex
spectral parameter with the presence of poles taken into account. An explicit resolution
of such a problem remains beyond the scope of the present investigation in view of expected
technical difficulties and due to the fact that it is not necessary for obtaining the purely soliton
solutions.

In section 10 the equations governing the temporal evolution of scattering data in
reflectionless case are obtained.

In section 11 we establish the one-to-one correspondence between the field amplitudes of
our nonlinear model and the temporal derivatives of first expansion coefficients in Laurent-type
series of envelope Jost functions.

In section 12, based on the results of previous sections, we obtain the simplest nontrivial
solution to the discrete nonlinear dynamical system under study.
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In view of their standard role, any descriptions of introductory and concluding sections
are omitted.

2. Auxiliary linear problems

In this paper we derive the model of interest starting with the well-known zero-curvature
equation [14–19]

d

dτ
L(n|z) = A(n + 1|z)L(n|z) − L(n|z)A(n|z) (1)

serving as a compatibility condition for the two auxiliary linear problems

|u(n + 1|z)〉 = L(n|z)|u(n|z)〉 (2)

d

dτ
|u(n|z)〉 = A(n|z)|u(n|z)〉 (3)

with L(n|z),A(n|z) and |u(n|z)〉 being the spectral matrix operator, the evolution matrix
operator and the column matrix vector, respectively. Here n denotes the discrete coordinate
variable running through all integers from minus to plus infinity, τ denotes the time variable,
while z marks the time-independent spectral parameter. Some authors [14, 16, 17] also call
the zero-curvature equation (1) the Lax equation inasmuch as it plays basically a similar role
in the procedure of inverse scattering. In any event, the zero-curvature equation (1) permits us
both to restore the evolution operator A(n|z) and to generate some nontrivial discrete nonlinear
system, provided the spectral operator L(n|z) is appropriately chosen.

The order of the spectral problem (2) is determined by the number of distinct eigenvalues of
either the left limiting spectral matrix L(−∞|z) or the right limiting spectral matrix L(+∞|z)
under the natural premise of both sets of eigenvalues being identical. In this terminology the
spectral problems associated with the known multicomponent discrete nonlinear Schrödinger
systems [17, 40–43] must be treated as second-order ones despite being rather sophisticated
matrix generalizations of the basic Ablowitz–Ladik (i.e. discretized Zakharov–Shabat) spectral
problem [4–6]. We also observe similar phenomena in the spectral problems associated with
the matrix generalizations of nonlinear Toda systems [44, 45]. In general, however, the higher
rank of the spectral matrix L(n|z) could provide a higher order of the respective spectral
problem (2).

There is another way to generate new discrete nonlinear integrable systems. It arises
from the continuous Gel’fand–Dikiy scheme [36] via formal replacement of differentiation
operators in the extended Schrödinger spectral problem into the appropriate powers of the
shift operator. We do not discuss here all the features of such an approach and we direct the
interested reader to the voluminous literature on this subject; see, for example, [46–48] and
references therein. Instead we would like to note that the order of the discretized extended
Schrödinger spectral problem with the ordinary potentials is determined by the difference
between the highest and the lowest powers of the involved shift operator [49].

Of course, the situation becomes complicated when the matrix-valued discretized extended
Schrödinger spectral problem with the matrix-valued potentials is considered [50]. However,
as a result we acquire more flexible possibilities in establishing the formal relationship between
the spectral problems appearing in different approaches but dealing with the same nonlinear
evolution model (see appendix A for a particular example).

Returning to the starting point of our investigation (1)–(3) we adopt L(n|z) and A(n|z) as
3 × 3 matrices whereas |u(n|z)〉 is the three-component column vector
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|u(n|z)〉 ≡

〈1|u(n|z)〉

〈2|u(n|z)〉
〈3|u(n|z)〉


 . (4)

Then taking the spectral operator L(n|z) in the form

L(n|z) =

p11(n) + λ(z) F12(n) p13(n)

G21(n) 0 G23(n)

p31(n) F32(n) p33(n) + λ(z)


 (5)

and looking for the evolution operator A(n|z) in the form

A(n|z) =

 0 A12(n) 0

A21(n) λ(z) A23(n)

0 A32(n) 0


 (6)

we can observe by the direct substitution into the zero-curvature equation (1) that the
matrix elements of spectral operator (5) are not independent and should be parametrized
in terms of only three independent field variables q−(n), α(n), q+(n) and their temporal
derivatives (see appendix B for more details). It is worthwhile noting that, in general,
such a parametrization may contain two time-independent arbitrary functions of coordinate,
which could be responsible for some introduced inhomogeneity of coordinate space [51].
Abstracting from feasible speculations about their role in physical applications we take both
above-mentioned functions as sheer constants insofar as even in this simplified case we come
to the substantially nontrivial nonlinear dynamical system. Under these conditions and without
further loss of generality, the reduction in question can be written as follows

F12(n) = i exp[+q−(n)] cos α(n) (7)

G21(n) = i exp[−q−(n)] cos α(n) (8)

G23(n) = i exp[−q+(n)] sin α(n) (9)

F32(n) = i exp[+q+(n)] sin α(n) (10)

p11(n) = q̇−(n)[1 − sin4 α(n)] − q̇+(n) sin2 α(n) cos2 α(n) (11)

p13(n) = exp[+q−(n) − q+(n)]

× [q̇−(n) sin3 α(n) cos α(n) + q̇+(n) sin α(n) cos3 α(n) − α̇(n)] (12)

p31(n) = exp[−q−(n) + q+(n)]

× [q̇−(n) sin3 α(n) cos α(n) + q̇+(n) sin α(n) cos3 α(n) + α̇(n)] (13)

p33(n) = q̇+(n)[1 − cos4 α(n)] − q̇−(n) sin2 α(n) cos2 α(n). (14)

Here q−(n), q+(n) and α(n) are nothing but the field variables of desired nonlinear evolution
model, while the overdot denotes the derivative with respect to time τ . In turn, the matrix
elements Ajk(n) of the evolution operator A(n|z) are found to be

A12(n) = −i exp[+q−(n)] cos α(n) (15)

A21(n) = −i exp[−q−(n − 1)] cos α(n − 1) (16)

A23(n) = −i exp[−q+(n − 1)] sin α(n − 1) (17)

A32(n) = −i exp[+q+(n)] sin α(n). (18)
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The particular choice of functional dependence λ(z) on z in expressions (5) and (6)
is dictated by the boundary conditions imposed on the velocities q̇+(n), α̇(n), q̇−(n) at
both spatial infinities |n| → ∞. Thus, in the case of vanishing limiting velocities
q̇+(±∞) = 0, α̇(±∞) = 0, q̇−(±∞) = 0 which we use when developing the inverse
scattering technique, the choice λ(z) = z + 1/z turns out to be the most reasonable.

3. Nonlinear three-component dynamical model

Inserting expressions (7)–(14) and (15)–(18) just obtained into the spectral (5) and evolution
(6) matrices respectively,and manipulating with the compatibility (zero-curvature) relation (1),
we readily come to the system of three dynamical equations for the field variables q+(n), q−(n)

and α(n) on an infinite regular one-dimensional chain. For the sake of brevity we prefer to
write them in the standard Lagrangian form

d

dτ
[∂L /∂q̇+(n)] = ∂L /∂q+(n) (19)

d

dτ
[∂L /∂q̇−(n)] = ∂L /∂q−(n) (20)

d

dτ
[∂L /∂α̇(n)] = ∂L /∂α(n) (21)

with the Lagrangian function L given by

L = 1

2

∞∑
m=−∞

[
q̇2

+(m) sin2 α(m) + q̇2
−(m) cos2 α(m)

]

−
∞∑

m=−∞
exp[+q+(m + 1) − q+(m)] sin α(m + 1) sin α(m)

−
∞∑

m=−∞
exp[+q−(m + 1) − q−(m)] cos α(m + 1) cos α(m)

+
1

2

∞∑
m=−∞

[q̇+(m) − q̇−(m)]2 sin2 α(m) cos2 α(m) −
∞∑

m=−∞
α̇2(m). (22)

The components q+(n) and q−(n) are physically equivalent and play a mutually complementary
role to each other so that their sum Q(n) = [q+(n) + q−(n)]/2 can be treated as a Toda-type
field while their difference ρ(n) = [q+(n) − q−(n)]/2 can be thought of as an intrinsic degree
of freedom. Apart from its nonlinear wave origin (strictly manifested, for example, in the
continuous version of Lagrangian (22)) the field α(n) serves as a coupler of fields q+(n)

and q−(n) in their kinetic part. This mixture cannot be removed by either diagonalization
procedure and hence the very separation of fields q+(n) and q−(n) into the Toda Q(n) and
intrinsic ρ(n) components appears to be approximate. For this reason we do not abandon the
symmetrized dynamical variables q+(n), α(n), q−(n) in our subsequent presentation.

According to the general rule, an equivalence between the zero-curvature equation (1) and
the nonlinear model of interest (19)–(22) following from the chosen specifications (7)–(14) and
(15)–(18) of spectral (5) and evolution (6) matrices opens the door for the model (19)–(22)
to be integrated by the method of inverse scattering transform. However, the particular
realization of this scheme in our case does not look as simple inasmuch as three (rather than
two) distinct eigenvalues constitute the spectrum of the limiting spectral matrix L(−∞|z) or
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adequatelyL(+∞|z). Therefore, we are bound to rely here upon the Caudrey approach [22, 24]
although with some inevitable modifications.

4. Gauge transformed auxiliary linear problems

Inspecting the limits of spectral matrix (5) at both spatial infinities with due regard for adopted
reduction (7)–(14) we see that in general they do not coincide

lim
n→−∞ L(n|z) �= lim

n→+∞ L(n|z). (23)

As a consequence the direct application of Caudrey theory to our problem is formally forbidden.
This type of inconvenience is known also for the Toda system [15] and can in principle

be rebuffed by an appropriate gauge transformation

|v(n|z)〉 = S(n)|u(n|z)〉 (24)

M(n|z) = S(n + 1)L(n|z)S−1(n). (25)

The choice of gauge matrix S(n) is not unique and should meet the only basic condition

lim
n→−∞ M(n|z) = M(z) = lim

n→+∞ M(n|z) (26)

where M(z) can be taken as follows

M(z) =

z + 1/z F12 0

G21 0 G23

0 F32 z + 1/z


 (27)

F12 = i exp[+q−] cos α (28)

G21 = i exp[−q−] cos α (29)

G23 = i exp[−q+] sin α (30)

F32 = i exp[+q+] sin α. (31)

For the sake of definiteness we assume the gauge matrix to be

S(n) =

S11(n) 0 S13(n)

0 1 0
S31(n) 0 S33(n)


 (32)

where

S11(n) = exp[−q−(n) + q−] cos[α(n) − α] (33)

S13(n) = +exp[−q+(n) + q−] sin[α(n) − α] (34)

S31(n) = −exp[−q−(n) + q+] sin[α(n) − α] (35)

S33(n) = exp[−q+(n) + q+] cos[α(n) − α]. (36)

The use of the gauge transformed auxiliary linear problems

|v(n + 1)|z)〉 = M(n|z)|v(n|z)〉 (37)

d

dτ
|v(n|z)〉 = B(n|z)|v(n|z)〉 (38)
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and the gauge transformed zero-curvature relation

Ṁ(n|z) = B(n + 1|z)M(n|z) − M(n|z)B(n|z) (39)

enables us to remove totally the principal theoretical obstacle described at the beginning of
this section. Here M(n|z) and B(n|z) denote the transformed spectral and evolution operators
given by equation (25) and

B(n|z) = S(n)A(n|z)S−1(n) + Ṡ(n)S−1(n) (40)

respectively.

5. Eigenvalues of M (z) and the domains of their subordination

According to Caudrey [22, 24] the main peculiarities of a particular inverse scattering problem
are determined by the spectral properties of limiting spectral matrix M(z). In this context the
first step is to resolve the right

M(z)|v(z)〉 = ζ(z)|v(z)〉 (41)

and the left

〈v+(z)|M(z) = 〈v+(z)|ζ(z) (42)

eigenvalue problems with the limiting gauge transformed spectral operator M(z) given by
equations (26)–(31) and to perform the mutual comparison of all eigenvalues

ζ1(z) = z (43)

ζ2(z) = z + 1/z (44)

ζ3(z) = 1/z (45)

with respect to their moduli on the whole plane of complex spectral parameter z.
Thus for the components 〈k|vj (z)〉 of right (column) eigenvectors |v1(z)〉, |v2(z)〉, |v3(z)〉

we find

〈1|v1(z)〉 = i exp[+q−] cos α (46)

〈2|v1(z)〉 = −1/z (47)

〈3|v1(z)〉 = i exp[+q+] sin α (48)

〈1|v2(z)〉 = +i exp[+q−] sin α (49)

〈2|v2(z)〉 = 0 (50)

〈3|v2(z)〉 = −i exp[+q+] cos α (51)

〈1|v3(z)〉 = i exp[+q−] cos α (52)

〈2|v3(z)〉 = −z (53)

〈3|v3(z)〉 = i exp[+q+] sin α. (54)

For the components
〈
v+

j (z)
∣∣k〉 of left (row) eigenvectors

〈
v+

1 (z)
∣∣, 〈v+

2 (z)
∣∣, 〈v+

3 (z)
∣∣ in turn we

have

〈v+
1 (z)|1〉 = i exp[−q−] cos α (55)
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〈v+
1 (z)|2〉 = −1/z (56)

〈v+
1 (z)|3〉 = i exp[−q+] sin α (57)

〈v+
2 (z)|1〉 = −i exp[−q−] sin α (58)

〈v+
2 (z)|2〉 = 0 (59)

〈v+
2 (z)|3〉 = +i exp[−q+] cos α (60)

〈v+
3 (z)|1〉 = i exp[−q−] cos α (61)

〈v+
3 (z)|2〉 = −z (62)

〈v+
3 (z)|3〉 = i exp[−q+] sin α. (63)

The j th eigenvalue ζj (z) pertains equally well both to the j th right |vj (z)〉 and j th left
〈
v+

j (z)
∣∣

eigenvectors. As a result the orthogonality relations

〈v+
j (z)|vk(z)〉

〈v+
j (z)|vj (z)〉 = δjk (64)

are proven to be valid, where

〈v+
j (z)|vk(z)〉 ≡

3∑
l=1

〈v+
j (z)|l〉〈l|vk(z)〉 (65)

while j and k run from 1 to 3.
Insofar as all three eigenvalues ζ1(z), ζ2(z), ζ3(z) of M(z) as the functions of z are

distinct (see equations (43)–(45)) the complex z plane can inevitably be divided into the six
different regions in accordance with the six feasible chains of inequalities between their moduli
|ζ1(z)|, |ζ2(z)|, |ζ3(z)|. Speaking formally, the parameter z will be regarded as belonging to
the region D(jkl) provided it satisfies the chains of inequalities

|ζj (z)| < |ζk(z)| < |ζl(z)| (66)

where the sequence {jkl} must be detectable among the six possible permutations of sequence
{123}. Due to the evident equalities

|ζj (z
∗)| = |ζj (z)| = |ζj (−z)| (67)

each of regions just defined is subdivided into the two disconnected symmetrical domains
either in the top and the bottom quadrants as

D(123) = Dt(123) + Db(123) (68)

D(213) = Dt(213) + Db(213) (69)

D(231) = Dt(231) + Db(231) (70)

D(321) = Dt(321) + Db(321) (71)

or predominantly in the left and the right quadrants as

D(132) = Dl(132) + Dr(132) (72)

D(312) = Dl(312) + Dr(312) (73)

(see figure 1 for clarity).
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Figure 1. Subdivision into the regions {D(jkl)} in the plane of complex spectral parameter z. The
parameter z is assumed to belong to D(jkl) if |ζj (z)| < |ζk(z)| < |ζl(z)|, where ζ1(z), ζ2(z), ζ3(z)

are the eigenvalues of M(z). The pairs of subindices l, r and t, b are written to distinguish two
disconnected parts (domains) of the same region, e.g. D(132) = Dl(132) + Dr(132).

6. Direct scattering problem: the advanced Caudrey approach

The advanced version of Caudrey approach to the direct and inverse scattering problems is
based upon his generalized definition of Jost functions [22, 24] which, in contrast to the
standard ones [21, 23, 26, 27], succeeds in avoiding any address to the conjugate spectral
problem even in the highly complicated cases of spectral plane subdivision. As a result,
both the direct and the inverse scattering theories acquire the forms of essentially formalized
procedure weakly sensitive to the particular order of the spectral operator.

In this section, we will substantially use the definitions and results of the previous two
sections. Moreover, we will operate with the nonstandard term ‘j th envelope Jost function’
serving for the j th Jost function multiplied by the factor [ζj (z)]−n and hence demonstrating
the more smooth dependence on spatial coordinate n.

Following Caudrey [22, 24] we adopt the j th envelope Jost function

|�j(n|z)〉 = [ζj (z)]−n|ϕj(n|z)〉 (j = 1, 2, 3) (74)

associated with the gauge transformed auxiliary spectral problem (37) as a solution to the j th
Fredholm summation equation

|�j(n|z)〉 = |vj (z)〉 +
∞∑

m=−∞
Kj(n|z|m)|�j(m|z)〉 (j = 1, 2, 3) (75)

with the j th kernel matrix Kj(n|z|m) specified by the expression

Kj(n|z|m) = [ζj (z)]m−n[M(z)]n−m−1

[
θ(n − m)I −

3∑
k=1

θ(|ζk(z)| − |ζj (z)|)Pk(z)

]

× [M(m|z) − M(z)] (j = 1, 2, 3) (76)
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where Pk(z) denotes the kth projection operator

Pk(z) ≡ |vk(z)〉〈v+
k (z)|

〈v+
k (z)|vk(z)〉 (k = 1, 2, 3) (77)

I denotes the unity 3 × 3 matrix and

θ(x) =
{

1 if x > 0
0 if x � 0.

(78)

We call |ϕj(n|z)〉 the j th Jost function inasmuch as, according to the relation (74) and the
j th Fredholm equation (75), it meets all the necessary demands of the usual definition, i.e. it
satisfies both the gauge transformed spectral equation (37) and the standard boundary condition

lim
n→−∞[ζj (z)]−n|ϕj(n|z)〉 = |vj (z)〉 (j = 1, 2, 3). (79)

An extra property affirming the boundedness of each envelope Jost function |�j(n|z)〉
(j = 1, 2, 3) at n → +∞ follows from the respective Fredholm equation (75) after the use of
identity

θ(n − m) · I −
3∑

k=1

θ
(|ζk(z)| − |ζj(z)|

)
Pk(z)

≡
3∑

k=1

θ(|ζj (z)| − |ζk(z)|)Pk(z) − θ(m + 1 − n) · I + Pj (z)

+
3∑

k=1

(1 − δjk)[1 − θ(|ζk(z)| − |ζj (z)|) − θ(|ζj (z)| − |ζk(z)|)]Pk(z) (80)

in the respective kernel matrix (76).
When proving the boundary properties of Jost functions at n → −∞ and n → +∞, an

assumption about the sufficiently rapid decrease of M(n|z) − M(z) to the zero 3 × 3 matrix
at respective infinity of coordinate n turns out to be rather convenient.

Actually the same assumption about the rapid vanishing of M(n|z) − M(z) at |n| → ∞
supports a sufficient condition for the Fredholm determinant fj (z) and the 3 × 3 matrix
analogue of the first Fredholm minor Fj (n|z|m) (j = 1, 2, 3) associated with the respective
Fredholm equation (75) to exist in every spectral region defined in section 5. Here it
should be particularly emphasized that our spectral parameter z has nothing to do with
the auxiliary parameter of standard Fredholm theory [52]. Moreover, each kernel matrix
Kj(n|z|m) (j = 1, 2, 3) is seen (equation (76)) to be a piecewise function of spectral parameter,
i.e. to exhibit a jump discontinuity once the parameter z crosses the boundary between the
spectral domains. In principle, the similar discontinuities may be displayed also in fj (z) and
Fj (n|z|m) (j = 1, 2, 3) inasmuch as these quantities are linked to the respective Kj(n|z|m)

through the basic Fredholm relations

Fj (n|z|m) − fj (z)Kj(n|z|m) =
∞∑

l=−∞
Fj (n|z|l)Kj (l|z|m) (j = 1, 2, 3) (81)

Fj (n|z|m) − fj (z)Kj(n|z|m) =
∞∑

l=−∞
Kj(n|z|l)Fj (l|z|m) (j = 1, 2, 3). (82)

However, within the interior of each individual spectral domain the quantities fj (z) and
Fj (n|z|m) (j = 1, 2, 3) have to be regular functions of spectral parameter z [53] insofar as
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the same is certainly true for the respective kernel Kj(n|z|m) (equation (76)). The limits of
these functions as z approaches any interdomain boundary exist and are finite.

Thus, at all z providing fj (z) �= 0 the j th 3 × 3 matrix Fredholm resolvent

Rj(n|z|m) = Fj (n|z|m)

fj (z)
(j = 1, 2, 3) (83)

is defined and the formal solution of j th Fredholm equation (75) is given by

|�j(n|z)〉 = |vj (z)〉 +
∞∑

m=−∞
Rj(n|z|m)|vj (z)〉 (j = 1, 2, 3). (84)

We can reckon that this result (84) for the set of envelope Jost functions {|�j(n|z)〉} is
the main step in mapping the set of dynamical variables {q+(n), α(n), q−(n)} into the set of
scattering data. The latter in Caudrey terminology [21–24] is nothing but the information about
the generic poles (i.e. the poles unremovable by any renormalization of the set {|vj (z)〉}) of Jost
functions and their residues as well as about possible discontinuities of Jost functions in the
complex z plane. Evidently these poles are determined by the zeros of Fredholm determinants
while the jump singularities may occur only on the boundaries between the domains in the
plane of complex spectral parameter (i.e. spectral domains).

7. Direct scattering transform: how to achieve an explicit mapping

Strictly speaking, the mapping from the field amplitudes into the Jost functions given in its
present form (84) is fairly implicit insofar as the field amplitudes q−(n), α(n), q+(n) remain
explicitly traceable in all Jost functions under consideration. Unfortunately this fact becomes
evident only in the final stage of inversion from the scattering data to the Jost functions and
can be plainly elucidated, for example, in an extra property

lim
|ζj (z)|→∞

[|�j(n|z)〉 − S(n)S−1(−∞)|vj (z)〉] = 0 · I (j = 1, 2, 3) (85)

necessary for the inversion to be fixed uniquely.
Looking at the fixing condition (85) we find that the situation with an implicit mapping can

be readily handled via the simple back gauge transformation in all quantities of interest. Thus,
instead of the j th Jost function |ϕj(n|z)〉 and j th envelope Jost function |�j(n|z)〉 (j = 1, 2, 3)

we have to use their back gauge transforms

|ξj (n|z)〉 = S−1(n)|ϕj(n|z)〉 (j = 1, 2, 3) (86)

and

|�j(n|z)〉 = S−1(n)|�j(n|z)〉 (j = 1, 2, 3). (87)

accordingly. The j th resolvent solution (84) in turn is apparently converted to yield

|�j(n|z)〉 = |uj (z)〉 +
∞∑

m=−∞
Dj(n|z|m)|uj(z)〉 (j = 1, 2, 3) (88)

where

|uj (z)〉 = S−1(−∞)|vj (z)〉 (j = 1, 2, 3) (89)

denotes the j th right eigenvector of operator

L(z) = S−1(−∞)M(z)S(−∞) = L(−∞|z) (90)

and

Dj(n|z|m) = S−1(n)Rj (n|z|m)S(−∞) + [S−1(n)S(−∞) − I ]δnm (j = 1, 2, 3) (91)
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denotes the j th back transformed resolvent. Finally, the j th fixing condition (85) is rewritten
as

lim
|ζj (z)|→∞

[|�j(n|z)〉 − |uj (z)〉] = 0 · I (j = 1, 2, 3). (92)

It is worth noticing that, while making the mapping explicit, the back gauge transform
saves all fundamental properties of Jost functions and envelope Jost functions to be carried
over into their back gauge transformed counterparts. Therefore, it looks reasonable to treat
|ξj (n|z)〉 and |�j(n|z)〉 as the j th Jost function and the j th envelope Jost function (j = 1, 2, 3)

associated directly with the original auxiliary spectral problem (2).

8. Scattering data: reflectionless case

According to the general rule [22, 24], the scattering data can be identified with information
about the singularities of resolvent matrices. In this paper, we adopt such a definition and
consider the so-called reflectionless case when the jump singularities of Jost functions on
boundaries between the domains in the plane of the complex spectral parameter are absent
and the only informative singularities of Jost functions are the poles emanated from zeros of
respective Fredholm determinants.

In order to examine these poles we have to know the Wronskian

3
W
k=1

{|ξk(n|z)〉} ≡ det[〈j |ξk(n|z)〉] (93)

calculated on the Jost solutions of original spectral problem (2). Applying the Wronskian
operation (93) to the set of equalities

|ξk(n + 1|z)〉 = L(n|z)|ξk(n|z)〉 (k = 1, 2, 3) (94)

with the use of asymptotic properties

lim
n→−∞[ζk(z)]

−n|ξk(n|z)〉 = |uk(z)〉 (k = 1, 2, 3) (95)

and equalities

L(z)|uk(z)〉 = ζk(z)|uk(z)〉 (k = 1, 2, 3) (96)

we obtain

3
W
k=1

{|ξk(n|z)〉} = 3
W
k=1

{|uk(z)〉}[det L(z)]n
n−1∏

m=−∞

{
det L(m|z)

det L(z)

}
. (97)

Now we can readily conclude that the right-hand side of expression (97) does not contain any
specific information about the singularities of resolvent matrix (91) because the same is true
separately for its cofactors

3
W
k=1

{|uk(z)〉} = (z − 1/z) exp[+q+(−∞) + q−(−∞)] (98)

and

det L(z) = det L(m|z) = z + 1/z. (99)

Thus we have
3

W
k=1

{ξk(n|z)〉} = [z + 1/z]n[z − 1/z] exp[+q+(−∞) + q−(−∞)]. (100)
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To proceed further, we denote zj (r) to be the rth zero of the j th Fredholm determinant
fj (z) and we assume that each zero is simple, i.e.

fj (zj (r)) = 0 lim
z→zj (r)

dfj (z)/dz �= 0 (r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3) (101)

and does not lie on any boundary between the spectral domains. Then the rth residue of the
j th Jost function |ξj (n|z)〉 can be defined in a manner

|Res[ξj (n|zj (r))]〉 ≡ lim
z→zj (r)

{|ξj (n|z)〉[z − zj (r)]}

(r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3)
(102)

usual for the simple poles. Also, to ensure the finiteness of residues, we have to adopt zeros
belonging to different Fredholm determinants to be distinct.

This latter demand becomes natural when inspecting the set of relationships

|Res[ξj (n|zj (r))]〉 = lim
z→zj (r)

3∑
k=1

|ξk(n|z)〉γkj (r)[1 − δjk]

(r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3) (103)

where the coefficients γkj (r) (r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3; k �= j) and the locations of
poles zj (r) (r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3) are referred to as a discrete part of scattering
data [22, 24]. Each of the N1 + N2 + N3 relationships (103) represents the condition of
linear dependence between the columns of a certain 3 × 3 matrix possessing the zero-valued
determinant, while the very set of zero-valued determinants

3
W
k=1

{|Res[ξj (n|zj (r))]〉δjk + lim
z→zj (r)

|ξk(n|z)〉[1 − δjk]} = 0

(r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3) (104)

arises from the basic Wronskian (100) as a consequence of the simple limiting operation
limz→zj (r){. . . [z − zj (r)]} taken separately for each of the N1 + N2 + N3 poles. The weak
point in the suggested arguments lies in the tacitly supposed coordinate independence of the
superposing coefficients γkj(r). However, it is precisely this hypothesis which proves to be
the only plausible assumption giving rise to the self-consistent time evolution of scattering
data, thus ensuring the noncontradictive character of the whole theory.

Another concretization of superposing coefficients

γkj(r) = θ(|ζk(zj (r))| − |ζj (zj (r))|)�kj (r)

(r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3; k �= j)
(105)

is a direct consequence of asymptotic conditions

lim
n→−∞ |�j(n|z)〉 = |uj (z)〉 (j = 1, 2, 3) (106)

which can be easily observed during the reconstruction of the envelope Jost functions.
Additional information about the scattering data can be obtained by the symmetry analysis

of envelope Jost functions and will be taken into account in the final formulae of their
reconstruction. The symmetries of interest may be formally divided into two groups

|�1(n|1/z)〉 = |�3(n|z)〉 (107)

|�2(n|1/z)〉 = |�2(n|z)〉 (108)

|�3(n|1/z)〉 = |�1(n|z)〉 (109)
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and

〈k|�j(n|z∗)〉∗ = (−1)k〈k|�j(n|z)〉 (j = 1, 2, 3; k = 1, 2, 3). (110)

While the first group (107)–(109) becomes evident from the very forms of the original spectral
operator (5) and the limiting eigenfunctions (89) written explicitly, the second (110) should
invoke an extra assumption about the reality of dynamical variables q−(n), α(n), q+(n) for its
proper justification.

9. Reconstruction of envelope Jost functions in terms of their residues

Relying upon the evident correspondence

|ξj (n|z)〉 = [ζj (z)]
n|�j(n|z)〉 (j = 1, 2, 3) (111)

between the Jost functions |ξj (n|z)〉 and the envelope Jost functions |�j(n|z)〉 and using the
fundamental formulae (103) for the residues |Res[ξj (n|zj (r))]〉 of Jost functions concretized
by the expressions (105) we readily come to the similar formulae

|Res[�j(n|zj (r))]〉 = lim
z→zj (r)

3∑
k=1

|�k(n|z)〉

× θ(|ζk(zj (r))| − |ζj (zj (r))|)�kj(r)[1 − δjk]

[
ζk(zj (r))

ζj (zj (r))

]n

(r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3) (112)

for the residues

|Res[�j(n|zj (r))]〉 ≡ lim
z→zj (r)

{|�j(n|z)〉[z − zj (r)]}

(r = 1, 2, 3, . . . , Nj ; j = 1, 2, 3)
(113)

of envelope Jost functions.
Now we have collected all necessary information (92), (106), (107)–(109), (110), (112)

sufficient to reconstruct the general features of envelope Jost functions in the reflectionless
case. The methods of complex variable theory yield

|�1(n|z)〉 = |u1(z)〉 + (1 − δ0N)

N∑
r=1

|�2(n|z1(r))〉C21(n|r) ζ1(z1(r))

ζ1(z) − ζ1(z1(r))

+ (1 − δ0N)

N∑
r=1

|�3(n|z1(r))〉C31(n|r) ζ1(z1(r))

ζ1(z) − ζ1(z1(r))

+ (1 − δ0N)

N∑
r=1

|�2(n|z∗
1(r))〉C∗

21(n|r) ζ1(z
∗
1(r))

ζ1(z) − ζ1(z
∗
1(r))

+ (1 − δ0N)

N∑
r=1

|�3(n|z∗
1(r))〉C∗

31(n|r) ζ1(z
∗
1(r))

ζ1(z) − ζ1(z
∗
1(r))

(114)
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|�2(n|z)〉 = |u2(z)〉 + (1 − δ0M)

M∑
r=1

|�1(n| −
z2(r))〉

−
C12(n|r) ζ2(

−
z2(r))

ζ2(z) − ζ2(
−
z2(r))

+ (1 − δ0M)

M∑
r=1

|�3(n| −
z2(r))〉

−
C32(n|r) ζ2(

−
z2(r))

ζ2(z) − ζ2(
−
z2(r))

+ (1 − δ0M)

M∑
r=1

|�1(n| −
z∗

2(r))〉
−
C

∗
12(n|r) ζ2(

−
z∗

2(r))

ζ2(z) − ζ2(
−
z∗

2(r))

+ (1 − δ0M)

M∑
r=1

|�3(n| −
z∗

2(r))〉
−
C

∗
32(n|r) ζ2(

−
z∗

2(r))

ζ2(z) − ζ2(
−
z∗

2(r))

(115)

|�2(n|z)〉 = |u2(z)〉 + (1 − δ0M)

M∑
r=1

|�3(n| +
z2(r))〉

+
C32(n|r) ζ2(

+
z2(r))

ζ2(z) − ζ2(
+
z2(r))

+ (1 − δ0M)

M∑
r=1

|�1(n| +
z2(r))〉

+
C12(n|r) ζ2(

+
z2(r))

ζ2(z) − ζ2(
+
z2(r))

+ (1 − δ0M)

M∑
r=1

|�3(n| +
z∗

2(r))〉
+
C

∗
32(n|r) ζ2(

+
z∗

2(r))

ζ2(z) − ζ2(
+
z∗

2(r))

+ (1 − δ0M)

M∑
r=1

|�1(n| +
z∗

2(r))〉
+
C

∗
12(n|r) ζ2(

+
z∗

2(r))

ζ2(z) − ζ2(
+
z∗

2(r))
(116)

|�3(n|z)〉 = |u3(z)〉 + (1 − δ0N)

N∑
r=1

|�1(n|z3(r))〉C13(n|r) ζ3(z3(r))

ζ3(z) − ζ3(z3(r))

+ (1 − δ0N)

N∑
r=1

|�2(n|z3(r))〉C23(n|r) ζ3(z3(r))

ζ3(z) − ζ3(z3(r))

+ (1 − δ0N)

N∑
r=1

|�1(n|z∗
3(r))〉C∗

13(n|r) ζ3(z
∗
3(r))

ζ3(z) − ζ3(z
∗
3(r))

+ (1 − δ0N)

N∑
r=1

|�2(n|z∗
3(r))〉C∗

23(n|r) ζ3(z
∗
3(r))

ζ3(z) − ζ3(z
∗
3(r))

(117)

where

Ck1(n|r) = θ(|ζk(z1(r))| − |ζ1(z1(r))|)[ζk(z1(r))/ζ1(z1(r))]nCk1(r)

(r = 1, 2, 3, . . . , N; k = 2, 3; z1(r)z3(r) = 1) (118)
−
Ck2(n|r) = θ(|ζk(

−
z2(r))| − |ζ2(

−
z2(r))|)[ζk(

−
z2(r))/ζ2(

−
z2(r))]n

−
Ck2(r)

(r = 1, 2, 3, . . . ,M; k = 1, 3; −
z2(r)

+
z2(r) = 1) (119)

+
Ck2(n|r) = θ(|ζk(

+
z2(r))| − |ζ2(

+
z2(r))|)[ζk(

+
z2(r))/ζ2(

+
z2(r))]

n
+
Ck2(r)

(r = 1, 2, 3, . . . ,M; k = 3, 1; +
z2(r)

−
z2(r) = 1) (120)

Ck3(n|r) = θ(|ζk(z3(r))| − |ζ3(z3(r))|)[ζk(z3(r))/ζ3(z3(r))]nCk3(r)

(r = 1, 2, 3, . . . , N; k = 1, 2; z3(r)z1(r) = 1). (121)
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Here we have introduced the new numeration of poles originated from the manifested
symmetries (107)–(110) of envelope Jost functions. In so doing we had to assume that
N1 = 2N = N3, N2 = 4M and

C21(r) = C23(r) (r = 1, 2, 3, . . . , N) (122)

C31(r) = C13(r) (r = 1, 2, 3, . . . , N) (123)

−
C12(r) = +

C32(r) (r = 1, 2, 3, . . . ,M) (124)

−
C32(r) = +

C12(r) (r = 1, 2, 3, . . . ,M). (125)

It is convenient to treat the quantities C21(r), C31(r), z1(r), C23(r), C13(r), z3(r) (where

r = 1, 2, 3, . . . , N) and
−
C12(r),

−
C32(r),

−
z2(r),

+
C32(r),

+
C12(r),

+
z2(r) (where r = 1, 2, 3, . . . ,

M) together with their complex conjugate counterparts as the new more adequate although
overfilled set of scattering data rather than to decipher them in terms of the original
set.

The general scheme of complete reconstruction of envelope Jost functions from the
scattering data in the reflectionless case becomes clear, since it is reduced actually to resolving
the set of linear algebraic equations with respect to quantities |�j(n|z1(r))〉, |�j(n|z∗

1(r))〉
(where j = 2, 3; r = 1, 2, 3, . . . , N) and |�j(n| −

z2(r))〉, |�j(n| −
z∗

2(r))〉 (where j = 1, 3; r =
1, 2, 3, . . . ,M) or alternatively with respect to quantities |�j(n| +

z2(r))〉, |�j(
+
z∗

2(r))〉 (where
j = 3, 1; r = 1, 2, 3, . . . ,M) and |�j(n|z3(r))〉, |�j(n|z∗

3(r))〉 (where j = 1, 2; r =
1, 2, 3, . . . , N). However its practical implementation is determined by the additional
condition (173) supporting the self-consistency of field variables through the interdependency
of scattering data (see section 11 for more details).

In formulae (114)–(117) we have introduced the factors (1 − δ0N) and (1 − δ0M) in
order to exclude any confusion, provided N or M or both N and M are equal to zero. In
the latter case, no poles are present and the reconstruction of envelope Jost functions is
trivialized giving rise to the respective trivialization in the solution of the basic nonlinear
model. This conclusion is valid only on the class of reflectionless potentials, i.e. potentials
q+(n), α(n), q−(n), q̇+(n), α̇(n), q̇−(n) usually assumed to be reflectionless at the initial
moment τ = 0 and persisting in being reflectionless at any arbitrary time τ . However,
the reflectionless potentials are precisely the potentials realizing the soliton solutions of
original nonlinear model (19)–(22) which usually are the most interesting solutions for physical
applications.

In the case of reflecting potentials, the equations for the reconstruction of envelope
Jost functions must include not only the terms responsible for the discrete spectrum (as in
equations (114)–(117)) but the additional terms responsible for the continuous spectrum and
arising formally from the jump singularities of envelope Jost functions on the cuts along
the lines dividing the plane of the complex spectral parameter z into the domains (see
figure 1). These additional terms contain the Cauchy-type integrals from the envelope Jost
functions taken along the boundaries between domains (see, for example, [22, 24] for the
general theory) and make the problem of complete reconstruction of envelope Jost functions
highly complicated insofar as it becomes equivalent to the combined set of Fredholm integral
equations and linear algebraic equations. In terms of the Marchenko approach [54] such a
problem corresponds to the Marchenko-type summation equation with the nondegenerated
kernel and there is no simple algorithm for its explicit resolution. This is the main reason
why the case of reflecting potentials remains as a rule less studied, although for the sake of
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truth the attempt of finding explicit solutions of a second-order discrete inverse scattering
problem that are not restricted to the pure soliton case has recently been made [55] (see also
[33]).

10. Time dependences of scattering data

Below, we derive the evolution equations for the scattering data as they were defined in the
previous section.

As a first step, it is reasonable to suppose that Ṁ(z) = 0 · I . Then at both spatial infinities
|n| → ∞ the gauge transformed zero-curvature relation (39) yields

B(z)M(z) = M(z)B(z) (126)

where the limiting value

B(z) = lim
|n|→∞

B(n|z) (127)

of gauge transformed evolution operator (40) is given by

B(z) = (z + 1/z) · I − M(z). (128)

Thus the operators B(z) and M(z) are commutative and hence possess the same two sets of
eigenvectors, namely the right (46)–(54) and the left (55)–(63) ones. However, the eigenvalues

η1(z) = 1/z (129)

η2(z) = 0 (130)

η3(z) = z (131)

of B(z) and eigenvalues (43)–(45)of M(z) are seen to be distinct. Of course, the j th eigenvalue
ηj (z) pertains equally well both to the j th right |vj (z)〉 and j th left 〈v+

j (z)| eigenvectors, i.e.

B(z)|vj (z)〉 = ηj (z)|vj (z)〉 (j = 1, 2, 3) (132)

〈v+
j (z)|B(z) = 〈v+

j (z)|ηj (z) (j = 1, 2, 3). (133)

Furthermore, in parallel with the right Jost functions |ϕj(n|z)〉 satisfying

M(n|z)|ϕj(n|z)〉 = |ϕj(n + 1|z)〉 (j = 1, 2, 3) (134)

lim
n→−∞[ζj (z)]−n|ϕj(n|z)〉 = |vj (z)〉 (j = 1, 2, 3) (135)

we will take advantage of the left Jost functions 〈ϕ+
j (n|z)| satisfying

〈ϕ+
j (n + 1|z)|M(n|z) = 〈ϕ+

j (n|z)| (j = 1, 2, 3) (136)

lim
n→−∞〈ϕ+

j (n|z)|[ζj(z)]
n = 〈v+

j (z)| (j = 1, 2, 3). (137)

The property of orthogonality

〈ϕ+
j (n|z)|ϕk(n|z)〉 = 〈v+

j (z)|vk(z)〉 = 〈v+
j (z)|vj (z)〉δjk (j = 1, 2, 3; k = 1, 2, 3) (138)

will also be necessary.
The results of the previous two paragraphs enable us to prove that

d

dτ
|ϕj(n|z)〉 = [B(n|z) − ηj (z) · I ]|ϕj(n|z)〉 (j = 1, 2, 3). (139)
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Indeed, differentiating equation (134) with respect to time τ with the subsequent substitute of
Ṁ(n|z) from the gauge transformed zero-curvature relation (39) we conclude that

d

dτ
|ϕj(n|z)〉 − B(n|z)|ϕj(n|z)〉 =

3∑
k=1

|ϕk(n|z)〉dkj (z) (j = 1, 2, 3) (140)

insofar as the left-hand side of equation (140) was revealed to satisfy to the gauge transformed
spectral equation (37). Then operating on to equation (140) with 〈ϕ+

i (n|z)| from left to right
and taking the limit at n → −∞ we obtain

dij (z) = −ηi(z)δij (i = 1, 2, 3; j = 1, 2, 3) (141)

which in combination with equation (140) yields equation (139).
In terms of envelope Jost functions we evidently have

d

dτ
|�j(n|z)〉 = [B(n|z) − ηj (z) · I ]|�j(n|z)〉 (j = 1, 2, 3). (142)

The simple manipulation with equations (127), (133) and (142) gives rise to

lim
n→+∞

d

dτ
〈v+

j (z)|�j(n|z)〉 = 0 (j = 1, 2, 3). (143)

This property (143) together with those written down earlier, equations (127), (133) and
(142), comprise the main tool in establishing the evolution equations for the scattering data.
In so doing we have to prepare the reconstructions for 〈v+

j (z)|�j(n|z)〉(j = 1, 2, 3) from the
reconstructions (114)–(117) for |�j(n|z)〉 (j = 1, 2, 3) by means of gauge transformation

|�j(n|z)〉 = S(n)|�j(n|z)〉 (j = 1, 2, 3) (144)

and then to make two tricks assuming that d[S(∞)S−1(−∞)]/dτ = 0.
The first consists of calculating

lim
n→+∞ lim

ζj (z)→ζj (zj (s))

{
[ζj (z) − ζj (zj (s))]2 d

dτ
〈v+

j (z)|�j(n|z)〉
}

(j = 1, 2, 3; s = 1, 2, 3, . . . , (δj1 + δj3)N + δj2M) (145)

where under z2(s) we understand either
−
z2(s) or

+
z2(s) depending on which of the two equivalent

expressions (115) or (116) for |�2(n|z)〉 is involved. As a result we obtain

dz1(s)/dτ = 0 = dz3(s)/dτ (s = 1, 2, 3, . . . , N) (146)

d
−
z2(s)/dτ = 0 = d

+
z2(s)/dτ (s = 1, 2, 3, . . . ,M). (147)

After the time independence of pole locations is established, the second trick consisting
of calculating

lim
n→+∞ lim

ζj (z)→ζj (zj (s))

{
[ζj (z) − ζj (zj (s))]

d

dτ
〈v+

j (z)|�j(n|z)〉
}

(j = 1, 2, 3; s = 1, 2, 3, . . . , (δj1 + δj3)N + δj2M) (148)

might be done. As a result we obtain

dCk1(s)/dτ = [ηk(z1(s)) − η1(z1(s))]Ck1(s) (k = 2, 3; s = 1, 2, 3, . . . , N) (149)

d
−
Ck2(s)/dτ = [ηk(

−
z2(s)) − η2(

−
z2(s))]

−
Ck2(s) (k = 1, 3; s = 1, 2, 3, . . . ,M) (150)

d
+
Ck2(s)/dτ = [ηk(

+
z2(s)) − η2(

+
z2(s))]

+
Ck2(s) (k = 3, 1; s = 1, 2, 3, . . . ,M) (151)
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dCk3(s)/dτ = [ηk(z3(s)) − η3(z3(s))]Ck3(s) (k = 1, 2; s = 1, 2, 3, . . . , N). (152)

The evolution equations for the complex conjugate part of scattering data can be obtained
either by the same procedures with the replacement zj (s) into z∗

j (s) or by the sheer complex
conjugation of equations (146), (147) and (149)–(152).

11. Reconstruction of field amplitudes: general scheme

Inspecting the reconstructions (114)–(117) of envelope Jost functions |�j(n|z)〉(j = 1, 2, 3)

we observe that they can be expanded in Laurent-type series in the regions of their regularity.
In particular

|�1(n|z)〉 = |u1(z)〉 +
∞∑

m=1

|U1(n|m)〉[ζ1(z)]−m (z ∈ D(231) + D(321)) (153)

|�2(n|z)〉 = |u2(z)〉 +
∞∑

m=1

|U2(n|m)〉[ζ2(z)]
−m (z ∈ D(132) + D(312)) (154)

|�3(n|z)〉 = |u3(z)〉 +
∞∑

m=1

|U3(n|m)〉[ζ3(z)]
−m (z ∈ D(123) + D(213)). (155)

These expansions (153)–(155) enable us to reconstruct the field amplitudes
q−(n), α(n), q+(n) in terms of expansion coefficients

〈k|Uj(n|1)〉 ≡ Ukj (n|1) (k = 1, 3; j = 1, 2, 3) (156)

or more precisely in terms of their time derivatives.
For this purpose we must invoke the equalities

|�j(n + 1|z)〉ζj (z) = L(n|z)|�j(n|z)〉 (j = 1, 2, 3) (157)

for the back gauge transformed envelope Jost functions |�j(n|z)〉 on the one hand, and the
evolution equations for pjk(n) written in their authentic form

ṗjk(n) = Xjk(n + 1) − Xjk(n) (j = 1, 3; k = 1, 3) (158)

on the other. Here the notations

X11(n) = exp [+q−(n) − q−(n − 1)] cos α(n) cos α(n − 1) (159)

X13(n) = exp [+q−(n) − q+(n − 1)] cos α(n) sin α(n − 1) (160)

X31(n) = exp [+q+(n) − q−(n − 1)] sin α(n) cos α(n − 1) (161)

X33(n) = exp [+q+(n) − q+(n − 1)] sin α(n) sin α(n − 1) (162)

are implied.
Collecting the lowest terms in equalities (157) expanded in accordance with the formulae

(153)–(155 ) we might come to the interim result

p11(n) = −i[U11(n + 1|1) − U11(n|1)] exp[−q−(−∞)] cos α(−∞)

− i[U12(n + 1|1) − U12(n|1)] exp[−q−(−∞)] sin α(−∞) (163)

p13(n) = −i[U13(n + 1|1) − U13(n|1)] exp[−q+(−∞)] sin α(−∞)

+ i[U12(n + 1|1) − U12(n|1)] exp[−q+(−∞)] cos α(−∞) (164)



Three-component nonlinear dynamical system generated by the new third-order discrete spectral problem 5425

p31(n) = −i[U31(n + 1|1) − U31(n|1)] exp[−q−(−∞)] cos α(−∞)

− i[U32(n + 1|1) − U32(n|1)] exp[−q−(−∞)] sin α(−∞) (165)

p33(n) = −i[U33(n + 1|1) − U33(n|1)] exp[−q+(−∞)] sin α(−∞)

+ i[U32(n + 1|1) − U32(n|1)] exp[−q+(−∞)] cos α(−∞) (166)

which should be inserted into the evolution equations (158) for pjk(n). After an appropriate
summation the result for the quantities Xjk(n) (j = 1, 3; k = 1, 3) looks as follows:

X11(n) = cos2 α(−∞)

− i[U̇11(n|1) cos α(−∞) + U̇ 12(n|1) sin α(−∞)] exp[−q−(−∞)] (167)

X13(n) = exp[+q−(−∞) − q+(−∞)] cosα(−∞) sin α(−∞)

− i[U̇13(n|1) sin α(−∞) − U̇ 12(n|1) cosα(−∞)] exp[−q+(−∞)] (168)

X31(n) = exp[+q+(−∞) − q−(−∞)] sin α(−∞) cos α(−∞)

− i[U̇31(n|1) cos α(−∞) + U̇ 32(n|1) sin α(−∞)] exp[−q−(−∞)] (169)

X33(n) = sin2 α(−∞)

− i[U̇33(n|1) sin α(−∞) − U̇ 32(n|1) cosα(−∞)] exp[−q+(−∞)]. (170)

Here we should remember that neither the authentic evolution equations (158) nor the
combinations of field variables (159)–(162) are independent. In order to overcome this
obstacle when tackling the nonlinear dynamical system we were forced to introduce the three
field parametrization (7)–(10); see also appendix B for more details. However, we do not know
yet whether some universal parametrization for the expansion coefficients (156) or alternatively
for the scattering data themselves is possible. For this reason we restrict ourselves to the mere
statement that the property

X11(n)X33(n) = X13(n)X31(n) (171)

(evident from the definitions (159)–(162)) in combination with the properties

Uk1(n|m) = Uk3(n|m) (k = 1, 3; m = 1, 2, 3, . . . ,∞) (172)

(evident from the symmetry conditions (107) and (109)) give rise to the following requirement

iU̇ 12(n|1) exp[+q+(−∞)] sin α(−∞) − U̇ 13(n|1)U̇32(n|1)

= iU̇ 32(n|1) exp[+q−(−∞)] cos α(−∞) − U̇ 31(n|1)U̇ 12(n|1). (173)

Inverting the definitions (159)–(162) and supposing the quantities Xjk(n) to be given by
formulae (167)–(170) under all mentioned restrictions (172) and (173), we come to the formal
reconstruction of field amplitudes

exp[+2q+(n) − 2q+(n − 1)]

= [X13(n + 1)X33(n) + X11(n + 1)X13(n)][X33(n)X31(n − 1) + X31(n)X11(n − 1)]

X13(n + 1)X31(n − 1)
(174)

exp[+2q−(n) − 2q−(n − 1)]

= [X31(n + 1)X11(n) + X33(n + 1)X31(n)][X11(n)X13(n − 1) + X13(n)X33(n − 1)]

X31(n + 1)X13(n − 1)
(175)

cos 2α(n) = X11(n + 1)X13(n) − X13(n + 1)X33(n)

X11(n + 1)X13(n) + X13(n + 1)X33(n)
. (176)
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Although the results of this section have been derived by explicitly addressing the
reconstruction formulae (114)–(117) valid only for the reflectionless potentials q+(n), α(n),
q−(n), q̇+(n), α̇(n), q̇−(n), in reality however they are the most general ones inasmuch as the
basic demand necessary to obtain them consists in the presentability of back-transformed Jost
functions in the form of Laurent-type expansions (153)–(155). Fortunately, such expansions
can be justified irrespective of any pre-assumed properties of potentials q+(n), α(n), q−(n),
q̇+(n), α̇(n), q̇−(n), namely they represent nothing but the general analytical properties of
envelope Jost functions in the regions of their regularity.

12. Simplest solution

Although the full reconstruction of envelope Jost functions in the reflectionless case could, in
principle, be done according to the scheme described in section 9, an extra interplay between
their expansion coefficients (173) should always be taken into account or at least verified by
the final results. We believe such an interplay may be linked with some intrinsic symmetries
of envelope Jost functions, however at present any extra symmetries except for equations
(107)–(110) have not yet been revealed and the very question about their existence remains
open.

Nevertheless, bearing in mind the formal criteria already adopted for the envelope
Jost functions and requiring the solutions of the nonlinear model to be finite, the correct
concretizations concerning the scattering data sometimes can be made.

As an example let us analyse the simplest constructive case N = 1, M = 0, when the
partial reconstructions (114)–(117) for the envelope Jost functions are taken to be

|�1(n|z)〉 = |u1(z)〉 + |�3(n|z1(1))〉C31(n|1)
ζ1(z1(1))

ζ1(z) − ζ1(z1(1))

+ |�3(n|z∗
1(1))〉C∗

31(n|1)
ζ1(z

∗
1(1))

ζ1(z) − ζ1(z
∗
1(1))

(177)

|�2(n|z)〉 = |u2(z)〉. (178)

The expression for |�3(n|z)〉 we have dropped, since it carries the same information as that
already written (equation (177)).

The reconstruction of |�1(n|z)〉 will be complete provided the quantities |�3(n|z1(1))〉
and |�3(n|z∗

1(1))〉 are found. The set of equations to find these is evidently as follows:

+|�3(n|z1(1))〉
[

1 − C31(n|1)
ζ1(z1(1))

ζ1(z3(1)) − ζ1(z1(1))

]

− |�3(n|z∗
1(1))〉C∗

31(n|1)
ζ1(z

∗
1(1))

ζ1(z3(1)) − ζ1(z
∗
1(1))

= |u3(z1(1))〉 (179)

−|�3(n|z1(1))〉C31(n|1)
ζ1(z1(1))

ζ1(z
∗
3(1)) − ζ1(z1(1))

+ |�3(n|z∗
1(1))〉

[
1 − C∗

31(n|1)
ζ1(z

∗
1(1))

ζ1(z
∗
3(1)) − ζ1(z

∗
1(1))

]
= |u3(z

∗
1(1))〉. (180)



Three-component nonlinear dynamical system generated by the new third-order discrete spectral problem 5427

To proceed further, the parametrization

z1(1) = exp[−µ − ik] (181)

z3(1) = exp[+µ + ik] (182)

by real parameters µ > 0 and k seems to be reasonable. Then C31(n|1) can be written in the
form

C31(n|1) = exp[+2µn + 2ikn]C31(1) (183)

with

C31(1) = exp[−2τ sh(µ + ik) − 2µx(0) + ln(2shµ) − 2iβ(0)] (184)

where the parameters x(0) and β(0) are real.
In order for the functions q−(n), α(n), q+(n) to be finite, the Cramer determinant of the

linear set (179) and (180) must be of constant sign. This is achievable under restrictions
k = πν, cos 2β(0) < 0, where ν = 1, 2 and β(0) = π/3 without the loss of generality.

The rest of the calculations are straightforward. The result is as follows

q−(n) = ln
ch[µ(n + 1/2 − x(τ))]

ch[µ(n − 1/2 − x(τ)]
+ µ + q−(−∞) (185)

α(n) = α(−∞) (186)

q+(n) = ln
ch[µ(n + 1/2 − x(τ))]

ch[µ(n − 1/2 − x(τ))]
+ µ + q+(−∞) (187)

where

x(τ) = τ
shµ

µ
cos(πν) + x(0) (ν = 1, 2). (188)

13. Conclusion

Summarizing, we have developed the nonlinear model describing three coupled dynamical
subsystems on a regular one-dimensional lattice. Despite highly nontrivial coupling in its
kinetic and potential parts, the system as a whole admits the standard Lagrange formulation
and can also be readily rewritten in the Hamiltonian form. Moreover, it was obtained as a
compatibility condition of two auxiliary linear matrix equations and hence can be integrated
by the method of inverse scattering transform. This method turns out to be rather complicated
even in the framework of the advanced Caudrey approach, both due to the third order of
the respective spectral problem and because of hidden symmetries of Jost functions yet
to be revealed explicitly. We have tried to give as much information about the model as
possible at present in order to make it more reliable for further investigation. It is interesting
to note that even the simple result on the one-soliton solution has enabled us to test the
whole inverse scattering machinery and to conclude that it should be built up on back
gauge transformed envelope Jost functions |�j(n|z)〉 rather than on originally introduced ones
|�j(n|z)〉.
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Appendix A. 2 × 2 matrix reduction of original discrete spectral problem

To find the relationship between the spectral problem under study (2) and the discretized
Schrödinger spectral problem, it is sufficient to exclude the middle component from the
original equation (2) bearing in mind the explicit expression (5) for the spectral operator
L(n|z). The result is as follows(

〈1|u(n + 1|z)〉
〈3|u(n + 1|z)〉

)
−
(

p11(n) p13(n)

p31(n) p33(n)

)(
〈1|u(n|z)〉
〈3|u(n|z)〉

)

−
(

F12(n)G21(n − 1) F12(n)G23(n − 1)

F32(n)G21(n − 1) F32(n)G23(n − 1)

)(
〈1|u(n − 1|z)〉
〈3|u(n − 1|z)〉

)

= λ(z)

(
〈1|u(n|z)〉
〈3|u(n|z)〉

)
(A.1)

which is proven to be the 2 × 2 matrix version of the discrete Schrödinger spectral problem
with 2 × 2 matrix potentials.

Inspecting the reduced problem (A.1) at either of the limits n → −∞ or n → +∞ we
can readily conclude that it has little in common with the 2 × 2 matrix version of the discrete
spectral problem considered by Bruschi and Ragnisco [50]. As for the problem (A.1) and the
third-order discrete spectral problem discussed by Levi and Grundland [49], these also turn
out to be different.

Appendix B. On-site conservation laws and the parametrization of spectral operator
L(n|z)

Inserting the ansatzes (5) and (6) for the spectral L(n|z) and evolution A(n|z) matrices into
the zero-curvature equation (1) and collecting the terms with the same powers in λ(z) we find

A12(n) = −F12(n) (B.1)

A21(n) = −G21(n − 1) (B.2)

A23(n) = −G23(n − 1) (B.3)

A32(n) = −F32(n) (B.4)

and obtain the equations

ṗ11(n) = F12(n)G21(n − 1) − F12(n + 1)G21(n) (B.5)

ṗ13(n) = F12(n)G23(n − 1) − F12(n + 1)G23(n) (B.6)

ṗ31(n) = F32(n)G21(n − 1) − F32(n + 1)G21(n) (B.7)

ṗ33(n) = F32(n)G23(n − 1) − F32(n + 1)G23(n) (B.8)

Ḟ 12(n) = p11(n)F12(n) + p13(n)F32(n) (B.9)

Ġ21(n) = −G21(n)p11(n) − G23(n)p31(n) (B.10)

Ġ23(n) = −G21(n)p13(n) − G23(n)p33(n) (B.11)

Ḟ 32(n) = p31(n)F12(n) + p33(n)F32(n). (B.12)
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The equations (B.5)–(B.12) are not independent although they contain all information for
the nonlinear dynamical model to be extracted. Indeed we can readily verify that the two
following on-site conservation laws take place:

F12(n)G21(n) + F32(n)G23(n) = −exp[+2q(n)] (B.13)

p13(n)F32(n)G21(n) + p31(n)F12(n)G23(n) − p11(n)F32(n)G23(n) − p33(n)F12(n)G21(n)

= p(n) exp[+2q(n)]. (B.14)

Here q(n) and p(n) denote some functions of spatial coordinate n each being independent of
time τ .

The first restriction (B.13) is converted into identity by the parametrization

F12(n) = i exp[+q−(n) + q(n) + p(n)τ ] cos α(n) (B.15)

G21(n) = i exp[−q−(n) + q(n) − p(n)τ ] cos α(n) (B.16)

G23(n) = i exp[−q+(n) + q(n) − p(n)τ ] sin α(n) (B.17)

F32(n) = i exp[+q+(n) + q(n) + p(n)τ ] sin α(n) (B.18)

with the quantities q−(n), α(n), q+(n) arising as three independent field variables. Then,
equations (B.9)–(B.12) and the second restriction (B.14) with the use of expressions (B.15)–
(B.18) yield

p11(n) = q̇−(n) − q̇−(n) sin4 α(n) − q̇+(n) sin2 α(n) cos2 α(n) + p(n) (B.19)

p13(n) exp[+q+(n) − q−(n)] = q̇−(n) sin3 α(n) cos α(n)

+ q̇+(n) sin α(n) cos3 α(n) − α̇(n) (B.20)

p31(n) exp[−q+(n) + q−(n)] = q̇−(n) sin3 α(n) cos α(n)

+ q̇+(n) sin α(n) cos3 α(n) + α̇(n) (B.21)

p33(n) = q̇+(n) − q̇+(n) cos4 α(n) − q̇−(n) sin2 α(n) cos2 α(n) + p(n). (B.22)

The obtained parametrization formulae (B.15)–(B.22) have to support the eigenvalues both of
limiting spectral matrices L(−∞|z) and L(+∞|z) to be the same. In the case of velocities
q̇+(n), α̇(n), q̇−(n) vanishing at both spatial infinities the above demand is achievable provided
the limits of q(n) taken at both spatial infinities are the same

q(−∞) = q = q(+∞) (B.23)

and the limits of p(n) taken at both spatial infinities are also the same

p(−∞) = p = p(+∞). (B.24)

Thus eight dependent variables originated from the expression (5) for the spectral operator
are actually reduced to three independent field variables and their velocities.

In the main text, we have assumed q(n) and p(n) to be constants, which without the loss
of generality are taken as zeros.
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